Reklama

    Najbliższe wydarzenia

    Brak wydarzeń

    Wpływ tioli na toksyczność rtęci wg Rooneya

    Toxicology 234 (2007) 145-156

     

    Wpływ tioli, dwutioli i wchodzących w interakcje ligand na toksyczność rtęci

    James P.K. Rooney

    Centre for Synthesis and Chemical Biology, Department of Pharmaceutical and Medicinal Chemistry, Royal College of Surgeons in Ireland, 123 St Stephens Green, Dublin 2, Ireland

     

    1. Wstęp

     

    Toksyczność rtęci jest przedmiotem wzrastającego zainteresowania, jak i pojawiających się kontrowersji w medycynie współczesnej. Chociaż rtęć od setek lat jest znana jako substancja toksyczna, pozostało do wyjaśnienia wiele jeszcze kwestii odnośnie mechanizmów jej wpływu na procesy biochemiczne zachodzące w ciele. Na tle trwającej od dziesięcioleci debaty dotyczącej wykorzystywania rtęci w plombach amalgamatowych, pojawiły się ostatnio kontrowersje w zakresie stosowania zawierającego rtęć środka konserwującego tiomersalu oraz w zakresie ekspozycji na rtęć poprzez konsumpcję ryb. Pojawiły się także spekulacje, czy ekspozycja na metale ciężkie takie jak rtęć może mieć wpływ na etiologię różnych chorób neurodegeneracyjnych, takich jak stwardnienie zanikowe boczne (choroba Lou Gehringa), choroba Alzheimera, stwardnienie rozsiane i choroba Parkinsona (Clarkson 2002; Muter et al., 2004). Nadto coraz więcej zainteresowania poświęca się możliwej roli tiomersalu, zawierającego rtęć w formie etylowanej, w etiologii zaburzeń rozwoju, takich jak autyzm (Geier and Geier 2006, Muter et al. 2004; Parker et al. 2004).

    Każda z wyżej wymienionych kwestii odnosi się do przewlekłego zatrucia rtęcią, odnośnie którego zgromadzono bardzo skąpe dane – w tym do ustalenia pozostaje jeszcze maksymalny bezpieczny poziom ekspozycji (Berlin, 2003; Risher and Amler, 2005). Podczas gdy toksykologia kliniczna różnych form ostrego i przewlekłego zatrucia rtęcią została dokładnie opisana w ostatnich pracach (Clarkson, 2002l Clarkson et al. 2003), a przedmiotem innych jest analiza zatrucia rtęcią w aspekcie biologii molekularnej (Bridges and Zalups, 2005; Zalups, 2000), brak jest prac łączących dokonania obydwu tych specjalistycznych kwestii.

    Celem tej pracy jest próba odnalezienia takiej zbieżności poprzez rozważenie klinicznych, diagnostycznych i terapeutycznych implikacji wynikających z pogłębionej analizy zatrucia rtęcią w aspekcie biologii molekularnej. Praca skupia się na wpływie tioli, dwutioli i wchodzących w interakcje ligand, takich jak proteiny zawierające cynk i selen, na toksyczność rtęci na poziomie cząsteczkowym (patrz Tabela 1). Zawiera również ocenę wpływu aspektu molekularnego na kliniczną diagnostykę w kierunku zatrucia rtęcią w kontekście przewlekłej długoterminowej ekspozycji na różne formy rtęci i prawdopodobieństwa selektywnej retencji rtęci nieorganicznej w mózgu.

     

    2. Formy rtęci

    2.1. Rtęć metaliczna/Hg0

    Ekspozycja na rtęć może pochodzić z różnych źródeł, a sama rtęć obecna jest w środowisku w kilkunastu różnych formach. Rtęć metaliczna (Hg0) nie jest dobrze przyswajana w drodze trawienia, ale bardzo dobrze przyswajana jest w drodze inhalacji. Znajduje zastosowanie w termometrach, plombach amalgamatowych oraz kilkunastu innych substancjach używanych w gospodarstwie domowym i przemyśle. Pozostawiona w temperaturze pokojowej rtęć metaliczna przekształca się w opar, który jest doskonale absorbowany przez płuca. Po absorpcji ta forma rtęci jest rozpuszczalna w tłuszczach, ma zdolność przekraczania bariery krew-mózg i łożyska, jak również może uleć – przy udziale nadtlenku wodoru - utlenieniu do formy nieorganicznej (Hg2+), która jest odkładana w mózgu przez wiele lat (Braunwald er al., 2001, Hargreaves et al. 1988, Opitz et al. 1996, Takeuchi et al. 1989, Vahter et al. 1994). Warto zauważyć, że plomby amalgamatowe wydzielają opary rtęci, które są wdychane i absorbowane do układu krwionośnego (Brauwald et al., 2001, Clarkson et. al. 2003).

     

    Tabela 1

    Podsumowanie substancji wykorzystywanych w leczeniu zatrucia rtęcią

    molekuła

    Typ

    Rola w leczeniu zatrucia rtęcią

    Inne funkcje biologiczne

    Zn

     

    Cynk

    Minerał

    Wzmaga produkcję białek wiążących metale, metalotionein, które uważane jest za substancję chroniącą mózg przed ekspozycją na opary rtęci

    Ma wpływ na syntezę i stabilizację białek, DNA i RNA. Pełni rolę strukturalną w rybosomach i membranach. Reguluje produkcję hormonów sterydowych i białek aktywujących transkrypcję genów. Kluczowy dla produkcji nasienia, umożliwia rozwój w życiu płodowym. Kompetycyjny inhibitor wchłaniania miedzi.

    Se

     

    Selen

    Minerał

    Ma wpływ na dystrybucję i redukcję toksyczności rtęci u zwierząt, jednakże są dowody negatywnych interakcji z dwutiolowymi związkami chelatującymi, jak DMPS i DMSA u zwierząt zatrutych rtęcią

    W formie selenocysteiny jest składnikiem peroksydazy glutationowej i enzymów dejodynazy. Selen ma wąski indeks terapeutyczny, a jego toksyczna dawka zaczyna się od 400 ug/dzień

    NAC

     

    N-acetyl cysteina

    Endogeniczny tiol

    Zwiększa poziom GSH. Niektórzy lekarze wykorzystują ten związek w terapii zatrucia rtęcią, gdyż GSH zwiększa wydalanie rtęci metylowanej z żółcią. Jednakże doświadczalnie udowodniono, że NAC i GSH mają udział w dystrybucji rtęci do mózgu i nerek.

    Antyoksydant. Dożylna NAC jest odtrutką na przedawkowanie acetaminofenu. W formie wziewnej ma działanie mukolityczne poprzez rozdzielanie dwusiarkowych wiązań w mukoproteinach. Zażywana doustnie chroni przed nefropatią wywołaną przez podanie kontrastu

    GSH

     

    Glutation

    Endogeniczny tiol

    Ma wpływ na wydalanie metyrtęci z żółcią. Uważa się, że międzykomórkowy GSH pełni funkcję ochronną dla komórek. Z drugiej strony są dowody na jego wpływ na absorpcję rtęci nieorganicznej i rtęci metylowanej do nadnerczy

    Antyoksydant, który działa jako międzykomórkowy neutralizator wolnych rodników. Przy braku enzymu G6PD, brak możliwości regenerowania glutationu w czasie stresu oksydacyjnego prowadzi do rozpadu czerwonych krwinek

    ALA

     

    Kwas alfa-liponowy

    Endogeniczny dwusiarczek

    Metabolizowany wewnątrzkomórkowo do DHLA (kwas dihydroliponowy, ditiol). U licznych gatunków ssaków ma działanie chroniące mózg przed zatruciem rtęcią. Istotnym wydaje się rozmiar dawki i ich częstotliwość, niewłaściwe dawkowanie w widoczny sposób zwiększa poziom zatrucia. Ma dostęp do wszystkich tkanek organizmu, łącznie z mózgiem

    Koenzym w kompleksach enzymów: dehydrogenazy pirogronianowej, dehydrogenazy alfa-ketoglutarowej i dehydrogenazy łańcuchowego alfa-ketokwasu. Zwiększa wewnątrzkomórkowy poziom glutationu. Regeneruje witaminy C i E.

    DMPS

    Syntetyczny ditiol

    Tworzy mocne wiązania z molekułami rtęci nieorganicznej. Z powodu niskiej masy cząsteczkowej jest łatwo filtrowany przez nerki i wydalany z moczem. Nie chelatuje rtęci z mózgu.

    Chelatuje inne metale ciężkie, w tym arszenik, ołów i kadm. Chelatuje również minerały takie jak miedź, chrom i cynk. Jest używany w leczeniu choroby Wilsona.

    DMSA

    Syntetyczny ditiol

    Tworzy mocne wiązania z molekułami rtęci nieorganicznej. Z powodu niskiej masy cząsteczkowej jest łatwo filtrowany przez nerki i wydalany z moczem. Nie chelatuje rtęci z mózgu.

    Chelatuje inne metale ciężkie, w tym arszenik, ołów i kadm. Chelatuje również minerały takie jak miedź i cynk. Znajduje zastosowanie w medycynie nuklearnej.

     

    2. 2. Rtęć nieorganiczna/Hg2+

    Rtęć nieorganiczna znajduje się w licznych produktach kosmetycznych i gospodarstwa domowego (Ozuah, 2000), jak również znajduje zastosowanie w przemyśle. Jest dobrze absorbowana w drodze trawienia i przez skórę. Może przybierać formę metabolitu oparów rtęci metalicznej (przy wchodzeniu do komórki), rtęci metylowanej i etylowanej (Clarkson, 2002). Stosunkowo niewielka ilość rtęci w formie nieorganicznej przekracza barierę krew-mózg, większość zostaje wydalona z moczem lub kałem albo odkłada się w nerkach. Jednakże, rtęć nieorganiczna może przybierać w mózgu formę innych rodzajów rtęci i pozostaje w mózgu przez lata (Takeuchi et al., 1989, Vahter et al. 1994).

     

    2. 3. Rtęć organiczna

    Ekspozycja na rtęć organiczną u ludzi zazwyczaj ma miejsce w dwóch formach: rtęć metylowana (CH3Hg+) – z konsumpcji ryb; rtęć etylowana(C2H5Hg+), która jest składnikiem tiomersalu używanego w szczepionkach. Rtęć organiczna może być przedmiotem absorpcji przez płuca, jest również dobrze przyswajana w układzie trawiennym. Tylko niewielkie ilości są absorbowane przez skórę. Bezpieczeństwo tiomersalu jest aktualnie przedmiotem gorącej debaty. Rtęć organiczna bez przeszkód przekracza barierę krew-mózg, łożysko, pojawia się w mleku kobiecym i koncentruje się w nerkach oraz centralnym układzie nerwowym (Braunwald et al., 2001).

    Dimetylortęć, (CH3)2Hg, to forma rtęci organicznej spotykana tylko w laboratoriach. Trzeba zauważyć, że jest to bardzo toksyczny związek, który jest w dużej mierze absorbowany przez skórę (nawet rękawiczki lateksowe nie stanowią zabezpieczenia) i łatwo zmienia się w formę oparów. Ekspozycja na ilość odpowiadającą kilku kroplom jest śmiertelna, gdyż prowadzi do degeneracji układu nerwowego (Braunwald et al., 2001, Nierenberg et al., 1998). W roku 1997 dimetylortęć spowodowała śmierć profesora chemii i aktualnie odradza się stosowanie tego związku w laboratoriach, jeżeli możliwe są inne środki (Nierenberg et al., 1998).

     

    3. Eliminacja i biologiczny okres półrozpadu rtęci.

    Eliminacja rtęci z ludzkiego ciała zmienia się zależnie od form rtęci, a okres półrozpadu jest zmienny w zależności od organu. Eliminacja rtęci metalicznej ma miejsce przez mocz, kał i wydychane powietrze. Podstawową drogą eliminacji rtęci organicznej jest układ trawienny. Rtęć etylowana jest wydzielana do żółci, ale większość z niej przechodzi cykl enterohepatyczny (Clarkson, 2002).

     

    3.1. Toksykologia i eliminacja rtęci z mózgu

    Kwestia toksykologii i eliminacji rtęci z mózgu budzi wiele kontrowersji. Chociaż rtęć nieorganiczna nie ma właściwości pozwalającej na przekraczanie bariery krew-mózg przez dużą ilość tego związku – jej obecność stwierdza się z mózgu zarówno przy zatruciu rtęcią etylowaną, jak i etylowaną (Magos et al., 1985) oraz w przypadkach ekspozycji na opary rtęci związanej z wykonywaniem pracy zawodowej (Nylander et al., 1989; Opitz et al., 1996).

    Więcej kontrowersji budzi jednakże kwestia, czy to sama rtęć etylowana, czy raczej rtęć nieorganiczna powstała w wyniku demetylacji rtęci metylowanej mózgu, stanowi bezpośredni czynnik neurotoksyczny w przypadkach zatrucia rtęcią etylowaną. Badania dostarczyły wielu dowodów na korzyść tezy o bezpośredniej toksyczności rtęci metylowanej (Magos et al., 1985). W toku badań poddano szczury działaniu zarówno chlorku rtęci etylowanej (o stężeniu 8.0 i 9.6 mgHg/kg) i chlorku rtęci metylowanej (w stężeniu 8.0 mgHg/kg) drogą gastroskopii. Z drugiej strony, niektóre badania potwierdziły też tezę o bezpośredniej toksyczności rtęci nieorganicznej. Małpom z gatunku Macaca Fascicularis doustnie podano rtęć metylowanej (w stężeniu 50ugHg/kg) (Charleston et al., 1996, 1995; Vahter et al. 1994,1995). Tezę też udowodniono bez żadnych wątpliwości w drodze autopsji osób przewlekle zatrutych rtęcią (Davis et al., 1994; Takeuchi et al., 1989).

    Na pierwszy rzut oka badania wydają się prowadzić do sprzecznych wniosków. Ta ewidentna sprzeczność może być wyjaśniona przy użyciu starożytnej maksymy: „Dawka czyni truciznę”. W rezultacie, bezpośrednim toksycznym związkiem w każdym z wyżej opisanych przypadków jest ta forma rtęci, która jako pierwsza odłoży się na poziomie neurotoksycznym. W perspektywie krótkoterminowej, w przypadku podania rtęci metylowanej w dużych dawkach, tak jak w badaniach Magos et al. (1985), bezpośrednim związkiem toksycznym będzie najprawdopodobniej rtęć metylowana, z uwagi na wysokość podanej dawki, która prowadzi do bezpośredniego efektu toksyczności zanim w ogóle może dojść do szerszej demetylacji. Jednakże przy przewlekłej ekspozycji na małe dawki rtęci, jak w badaniach Charleston et al. (1996,1995) i Vahter et al. (1994,1995) bezpośrednim związkiem toksycznym będzie z dużym prawdopodobieństwem rtęć nieorganiczna, z jednej strony z uwagi na długoterminowy proces odkładania się jej w mózgu i wyjątkowo wysoki okres półrozpady i z drugiej strony z uwagi na fakt, iż rtęć metylowana osiąga stabilny stan po roku od ekspozycji i nie kumuluje się dłużej w mózgu, podczas gdy poziomy rtęci nieorganicznej rosły przez cały okres trwania eksperymentu (18 miesięcy).

    Trzeba również uwzględnić fakt, iż gdy rtęć nieorganiczna dotrze już do mózgu, jej okres półrozpadu w tym organie jest znacząco dłuższy niż rtęci etylowanej czy metylowanej (Charleston et al., 1996, 1995; Vahter ety al. 1994, 1995). W rezultacie rtęć nieorganiczna ma tendencję do kumulowania się w mózgu przy zatruciu rtęcią metylowaną już po tym, gdy poziom rtęci metylowanej osiągnął stabilny stan (Vahter et al., 1994). Rzeczywiście, wiele badań autopsyjnych przypadków zatrucia oparami rtęci i rtęcią metylowaną doprowadziło do ujawnienia rtęci nieorganicznej w mózgu wiele lat po ustaniu ekspozycji (Davis et al., 1994; Hargreaves et al., 1988; Nylander et al., 1989; Opitz et al., 1996; Takeuchi et al., 1989).

    Debata akademicka dotycząca tych zagadnień będzie prawdopodobnie kontynuowana. Niezależnie od tego, uwzględniając istniejące dowody na selektywną retencję rtęci nieorganicznej w mózgu zarówno po doustnej ekspozycji na rtęć metylowaną jak i ekspozycji na opary rtęci oraz uwzględniając fakt, że są to dwie najczęstsze drogi ekspozycji na rtęć w populacji ludzkiej (poprzez konsumpcję ryb i opary rtęci uwalniane z plomb amalgamatowych), jest oczywistym że kumulacja rtęci nieorganicznej w mózgu powstająca z przewlekłej ekspozycji na niskie dawki przez długi okres czasu, niezależnie od pierwotnych form rtęci, na której działanie narażona jest osoba, musi być traktowana jako potencjalne źródło neurotoksyczności u ludzi.

     

    4. Mechanizmy transportu rtęci w ludzkim ciele.

    Przynajmniej od wczesnych lat siedemdziesiątych wiadomym jest, że 99% rtęci krążącej w osoczu przyłącza się do grup tiulowych opartych na proteinach i spekulowano, że transport rtęci do poszczególnych organów i jej redystrybucja dotyczy pozostałego 1% rtęci przyłączonej do „zdolnych do dyfuzji tioli” (Clarkson, 1972), czyli np. tioli o niskiej masie cząsteczkowej, które przenikają przez membrany komórek (Lorscheider et al., 1995). W maju 2005 Bridges i Zalups (2005) opublikowali pracę analizującą różne przykłady endogenicznych tioli, które wspomagają transport metali ciężkich. Ich praca skupia się na zjawisku „molekularnego naśladownictwa” i przytacza wiele przykładów, kiedy tiole o niskiej masie cząsteczkowej połączyły się z rtęcią (i innymi ciężkimi metalami) umożliwiły wejście przez rtęć do różnych rodzajów komórek dzięki molekularnemu naśladownictwu. „Molekularne naśladownictwo odnosi się do zjawiska, w którym połączenie się jonów metali do grup nukleofilowych niektórych biomolekuł prowadzi do uformowania kompleksów organiczno-metalicznych, które zachowują się jak strukturalne i/lub funkcjonalne homologi innych endogenicznych biomolekuł albo tych molekuł, do których przyłączyły się jony metali.” (Bridges i Zalups, 2005).

    Wydaje się prawdopodobnym, iż rola naśladownictwa molekularnego w transporcie metali ciężkich podsumowana przez Bridgesa i Zalupsa (2005), stanowi istotny dowód kliniczny działania mechanizmów, dzięki którym toksyczne metale ciężkie transportowane są do różnych rodzajów komórek w całym ciele. Warto również dodać, że pozostało jeszcze do odkrycia wiele mechanizmów naśladownictwa molekularnego. W rzeczy samej, Zalups i Ahmad (2005a, b) opublikowali dalsze wyniki badań, które dowodzą, iż N-acetyl-cysteina (NAC) w połączeniu z rtęcią etylowaną i metylowaną oraz homocysteina w połączeniu z rtęcią metylowaną mogą działać jako substraty ludzkich transporterów anionów organicznych-1 (hOAT).

     

    5. Chelatacja

    Związki chelatacyjne są stosowane w farmakologicznym leczeniu zatrucia metalami ciężkimi. Chelatory to molekuły, które ściśle wiążą się z metalami obudowując je strukturą pierścienia. Dobry chelator jest toksyczny w niskim stopniu, wiąże się w pierwszej kolejności z metalami ciężkimi o stabilnych stałych stężeniowych i ma wyższy współczynnik wydalania niż endogeniczne związki wiążące metale, w ten sposób faworyzując szybką eliminację metali toksycznych. DMPS i DMSA to związki chelatacyjne oparte na ditiolach, stosowane w leczeniu zatrucia rtęcią. DMPS nie jest aktualnie zatwierdzony przez FDA do użytku klinicznego, chociaż jest stosowany w leczeniu zatrucia rtęcią bez aprobaty FDA (Risher i Amler, 2005). DMSA otrzymał zgodę na stosowanie u dzieci zatrutych ołowiem (Risher i Amler, 2005).

     

    5.1. DMPS (Dimaval, Unithiol) – dimerkaptopropanosulfon

    DMPS został zarejestrowany jako lek w Związku Radzieckim w roku 1958, ale stał się dostępny na Zachodzie dopiero w 1978 roku (Aposhian et al., 1995). DMPS jest ditiolem rozpuszczalnym w wodzie. Używa się go w odtruwaniu z arszeniku, ołowiu, rtęci i kadmu, ma również zastosowanie w leczeniu choroby Wilsona (wrodzona wada metabolizmu miedzy, prowadząca do biokumulacji miedzi). DMPS można podać doustnie lub dożylnie. Jest przetwarzany w ludzkim organizmie w acykliczne i cykliczne dwusiarczki (Aposhian et al., 1995). Poprzednio przypuszczano, że DMPS wiąże się z rtęcią w stosunku 1:1, jednak badania przy zastosowaniu spektrometrii rentgenowskiej udowodniły, że taka struktura nie jest możliwa (George et al., 2004). Autorzy ustalili, że konieczne jest zbudowanie bardziej kompleksowej struktury z wykorzystaniem przynajmniej dwóch molekuł DMPS i dwóch atomów rtęci. DMPS nie jest skuteczne w usuwaniu rtęci z mózgu (Aposhian et al., 2003; Bucht and Lauwerys, 1989; George et al., 2004). DMPS chelatuje również minerały – miedź, chrom i cynk (Risher i Amler, 2005).

     

    5.2. DMSA (Succimer, Chemet, Captomer) – kwas 2,3-dimerkatobursztynowy

    DMSA, podawane doustnie, jest gwałtownie jednak nie w całości przyswajane. Znajduje zastosowanie w chelatacji ołowiu, arszeniku, kadmu, rtęci i innych metali. Jest gwałtownie i w dużym zakresie metabolizowane i wydalane głównie z moczem, a w małej ilości z żółcią i przez płuca. Ponad 95% DMSA w krwi wiąże się z białkami (głównie z albuminą) i ponad 90% DMSA wydalanego z moczem przybiera formę dwusiarczku z L-cysteiną (Aposhian et al. 1995). Podobnie jak w przypadku DMPS, w przeszłości prezentowano pogląd, że DMSA wiąże się z rtęcią w stosunku 1:1. Jednakże George etal. (2004) również i w tym przypadku odkryli, że taka struktura nie jest możliwa. Stwierdzili, że DMSA formuje zwykle binuklearny kompleks Hg2(DMSA)2 in vitro. DMSA nie jest skuteczne w chelatacji rtęci z mózgu (Aposhian et al., 2003, Bucht i Lauwerysm 1989, George et al., 2004). Efekty uboczne stosowania DMSA obejmują zaburzenia trawienia, wysypkę na skórze i symptomy podobne do grypy. U niektórych pacjentów stwierdzono łagodną, a nawet umiarkowaną neutropenię i podczas terapii zaleca się regularne badania morfologii krwi. Przed terapią należy zbadać funkcje wątroby i nerek (Sweetman, 2002). DMSA jest uważany za najmniej toksyczny z chelatujących merkaptanów (Aposhian et al. 1995). DMSA ma okres półrozpadu równy 3,2 godziny (Aposhian et al., 1992b, Frumkin et al., 2001) i chelatuje również takie minerały jak miedź i cynk (Risher i Amler, 2005).

     

    6. Kwas alfa-liponowy - jego rola w leczeniu zatrucia rtęcią?

    6.1. ALA – kwas alfa-liponowy

    Kwas alfa-liponowy (ALA) to dwusiarczek, który jest znany jako bardzo silny antyoksydant i stosowany jest szeroko jako suplement diety. Wewnątrzkomórkowo redukowany jest do kwasu dihydroliponowego (DHLA), ditiolu, który ma właściwości antyoksydacyjne. DHLA może być swobodnie transportowane z komórek do przestrzeni międzykomórkowej. Zarówno ALA, jak i DHLA tworzą chelaty z różnymi metalami ciężkimi (Packer et al., 1997, 1995). Podanie ALA zwiększa wewnątrzkomórkowe poziomy GSH o 30-70% (Packer et al., 1997) i ma zdolności regenerujące inne antyoksydanty, takie jak witaminy C i E. W przeciwieństwie do DMSA i DMPS, ALA dociera do wszystkich obszarów centralnego układu nerwowego i nerwów obwodowych (Packer et al., 1997).

    Udowodniono, że ALA pełni rolę ochronną przeciwko efektom zatrucia rtęcią u licznych gatunków ssaków, jeśli kwas ten podany zostanie jednocześnie albo tuż po ekspozycji na rtęć (Donatelli, 2955, Grunert, 1960), zakładając że użyto właściwej dawki ALA (niewłaściwie odmierzone dawki zwiększają poziom zatrucia). Grunert (1960) zasugerował, że częstsze podawanie niższych dawek ALA może być również skuteczne w utrzymywaniu stałego poziomu ALA we krwi i efekt ten zaobserwowano u świnek morskich (którym podawano ALA co 4 godziny) ( Donatelli, 1955).

    Aposhian et al. (2003) odkryli, że ALA podane samo albo z DMSA nie chelatuje rtęci w nerkach czy mózgu u szczurów poddanych działaniu wielokrotnych dawek oparów rtęci. Jednakże Gregus et al. (1992) wykazał, że podanie ALA szczurom prowadzi do zwiększonego wydalania rtęci nieorganicznej z żółcią (12-37-krotnie). Ten sam efekt nie dotyczy rtęci metylowanej. Gregus et al. (1992) zasugerował, że rtęć nieorganiczna może być wydalana w formie kompleksów DHLA-Hg2+.

    Niezbędne są dalsze badania poświęcone ALA jako chelatorowi – w szczególności analiza chelatacji częstymi i niskimi dawkami, zasugerowanej przez Cutlera (1999). Chociaż nie recenzowaną naukowo publikacją, Cutler przekonująco uargumentował istotność częstotliwości podawania chelatora, co wzbudziło zainteresowanie społeczności naukowej. Podczas gdy wydawałoby się, że ALA ma duży potencjał jako chelator rtęci, jasno wynika również z prac Donatelli (1955) i Grunera (1960) że efekt działania ALA przy zatruciu rtęcią zależy od wielkości dawki i odstępu między dawkami w czasie.

     

    7. Interakcje z ligandami i substancje odżywcze mające wpływ na zatrucie rtęcią.

    Niewiele istnieje danych na temat wpływu, jakie mogą mieć na zatrucie rtęcią substancje odżywcze – zarówno w aspekcie ochrony przez rtęcią, jak i potęgowania jej działania przez interakcje z ligandami. Uwzględniając to, jaką rolę endogeniczne tiole, takie jak cysteina, odgrywają w transporcie rtęci po ludzkim organizmie, co podsumowali Bridges i Zalups (2005), wydawałoby się, że zróżnicowane poziomy tioli w osoczu prowadzą do zróżnicowanych poziomów retencji rtęci w organach. Rzeczywiście, w jednym z badań suplementacja NAC wyraźnie zwiększyła koncentrację rtęci w mózgu (Aposhian et al. 2003). Rodzi to wątpliwość, czy przyjmowanie z pożywieniem albo suplementami substancji zawierających tiole ma wpływ na transport rtęci do organów, a tym samym na poziom zatrucia. Najnowsze odkrycia dowodzą, że u szczurów ilość tioli to ważny czynnik w dystrybucji i eliminacji rtęci nieorganicznej (Zalups i Lash, 2006). Sugeruje się również, że u ludzi kontrolowanie poziomów cysteiny w osoczu jest istotne dla kontroli objawów i leczeniu zatrucia rtęcią (Cutler, 1999).

     

    7.1. N-Acetyl-cysteina (NAC)/glutation (GSH)

    NAC i GSH zasługują na szersze omówienie, gdyż niektórzy lekarze zalecają je jako leki na zatrucie rtęcią. Na pierwszy rzut oka wydawałoby się to logiczną decyzją, gdyż GSH jest związkiem, który ma wpływ na wydalanie rtęci metylowanej z żółcią (Ballatori i Clarkson, 1985), jak również uważa się, że wewnątrzkomórkowe GSH odgrywa rolę w ochronie komórek (Clarkson, 2002). Jednakże, tylko 1% obciążenia rtęcią metylowaną jest eliminowane z przewodu pokarmowego poprzez demetylację spowodowaną przez mikroflorę jelit – pozostała część jest reabsorbowana i przechodzi cykl enterohepatyczny (Clarkson, 2002). Co więcej, odkryto u szczurów, że koniugat rtęci z GSH zostaje faktycznie odkładana w nerkach jako rtęć organiczna (Bridges i Zalups, 2005). Koniugaty rtęci z GSH są konwertowane do koniugatów rtęci z cysteiną przez enzym gamma-glutamyltransferazę oraz cysteinylglicynazę w proksymalnych kanalikach nerkowych, prowadząc do zwiększonego odkładania się rtęci w nerkach. Dowiedziono również, że odkładanie się rtęci metylowanej w nerkach zależy od poziomu GSH (Richardson i Murphy, 1975). Aposhian et al. (2003) wykazał na przykładzie szczurów, które wystawiono na ekspozycję rtęci metalicznej, że NAC w widoczny sposób zwiększył koncentrację rtęci w mózgu. Dodatkowo, niedawno opublikowane wyniki badań Zalupsa i Ahmada (2005b) dowodzą, że koniugaty NAC oraz rtęci metylowanej i nieorganicznej są potencjalnie zdolnym do transportu związkami odkładanymi in vivo w komórkach nabłonka proksymalnych kanalików . Co więcej, ostatni z wymienionych eksperymentów przeprowadzono używając tkanek z nerek psich (MDCK) jednak z udziałem ludzkich transporterów anionów organicznych-1 (hOAT).

    Przyjmując nieskuteczność eliminacji rtęci metylowanej przez żółć, znany mechanizm enterohepatyczny dotyczący rtęci metylowanej oraz odkładanie się rtęci w nerkach i mózgu (Bridges i Zalups, 2005; Kerper et al., 1992) (dotyczy rodzajów rtęci wchodzących w kompleksy z tiolami o niskiej masie cząsteczkowej), NAC i GSH wydają się niewłaściwym wyborem terapii zatrucia rtęcią z powodu wysokiego ryzyka redystrybucji rtęci do tych organów.

     

    7. 2. Cynk

    Cynk zwiększa w nerkach zwierząt produkcję metalotioneiny, , białka wiążącego metale (Goyer et al., 1995). Metalotioneina jest białkiem o niewielkiej masie cząsteczkowej o dużej zawartości pozostałości cysteiny i metali. Rtęć formuje z metalotioneiną kompleksy, a metalotioneina jest znana jako związek chroniący układ nerwowy przed ekspozycją na opary rtęci (Yoshida et al., 2005). Rtęć nieorganiczna i metaliczna indukuje produkcję metalotioneiny w nerkach, chociaż rtęć metylowana nie czyni tego bezpośrednio ale w oparciu o metabolizowanie się do formy rtęcie nieorganicznej.

     

    7.3. Selen

    Selen to pierwiastek, który ma wpływ na dystrybucję rtęci i redukcję zatrucia rtęcią, co wykazano w eksperymentach na zwierzętach (Goyer et al., 1995). Co ciekawe, Hol et al. (2001) wykazał, że poziom selenu we krwi był znacznie niższy u osób, które miały objawy „choroby amalgamatowej” w porównaniu do zdrowych osób z plombami amalgamatowymi.

    Istnieją dowody na to, że selen w osoczu tworzy kompleksy z rtęcią nieorganiczną, które następnie łączą się z selenoproteiną-P (Galer et al., 2000 ; Sasakura i Suzuki, 1998), która z kolei zapobiega odkładaniu się rtęci w nerkach (Yamamoto, 1985). Funkcja selenoproteiny-P nie jest dobrze zbadana, jednak warto zaznaczyć, że badacze tej kwestii rozważają trzy możliwe role tej substancji: (1) obrona antyoksydacyjna; (2) rola w transporcie selenu; (3) rola ochronna jako naturalny chelator metali ciężkich (Chen i Berry, 2003).

    Zaobserwowano jednak u szczurów, że jednoczesne podawanie selenu (w formie selenitu sodu) oraz związku chelatacyjnego (DMSA lub DMPS) prowadzi do zmniejszonego wydzielania i znacznej redystrybucji rtęci – w szczególności zmniejszeniu rtęci w nerkach i zwiększeniu jej w wątrobie, choć wypada zaznaczyć, że inne organy nie były przedmiotem badań (Juresa et al., 2005). Jako, iż wykorzystywane chelatory (DMSA i DMPS) zwiększają wydalanie rtęci z moczem, a selenoproteina-P zapobiega odkładaniu się rtęci w nerkach, Juresa et al. (2005) zasugerowali, że konkurowanie ligand pomiędzy chelatorami i selenoproteiną-P prowadzi do redystrybucji rtęci i zmniejszonego wydzielania jej z moczem.

    Kolejny czynnik komplikujący kwestię związku selenu i zatrucia rtęcią to zwiększanie produkcji GSH w wątrobie przy zmniejszonym poziomie selenu (Hill i Burk, 1985), prowadzący nawet do podwojenia poziomu GSH w osoczu. Jak wcześniej wskazano, GSH ma związek z odkładaniem się rtęci w nerkach, a więc efekt selenu na poziom GSH może mieć również znaczenie dla zatrucia rtęcią.

    Warto zauważyć, że istotna jest forma przyjmowanego selenu. Selen w formie selenometioniny jest mniej więcej dwa razy tak biologicznie dostępny jak selenit sodu i dodatkowo zwiększa poziom selenoproteiny-P i poziom selenu w osoczu (Xia et al., 2005) (uwaga: całkowity poziom selenu obejmuje selen związany z proteiną i selenometioninę).

    Jak widać, interakcje pomiędzy rtęcią, selenem, cynkiem i tiolami są dość złożone. Przypuszcza się, że przyjmowanie selenu, cynku i tioli odgrywa ważną rolę przy rozpatrywaniu efektów rtęci na organizm człowieka i poziomu wydalania rtęci. Kwestia ta wymaga dalszych badań.

     

    7. 4. Błonnik spożywczy.

    Brakuje informacji o wpływie błonnika spożywczego na zatrucie rtęcią. Jednakże, badania in vitro dowiodły, że otręby pszennie mogą skutecznie wiązać rtęć i inne metale ciężkie (Ou et al., 1999). U myszy poddanych ekspozycji na rtęć metylowaną, dieta w 30% składająca się z otrębów doprowadziła do zwiększenia tempa eliminacji rtęci z ciała i do redukcji poziomu rtęci w mózgu (Rowland et al., 1986). Dowiedziono też, że pektyny jabłkowe skróciły okres zatrucia u dzieci powodując zwiększone wydalanie rtęci z moczem (Sobolev et al., 1999).

    Autor ten sugeruje potencjalny mechanizm działania, który prowadzi do zwiększenia wydalania rtęci przez błonnik spożywczy. Rtęć metylowana przechodzi intensywny cykl enterohepatyczny (Clarkson, 2002). Jako, iż dowiedziono in vitro że błonnik łączy ze sobą rtęć, a do tego błonnik nie jest przyswajalny, zasugerowano, że błonnik w diecie przerywa cykl enterohepatyczny, wiążąc rtęć i zwiększając tempo jej wydalania.

    Co więcej, Gregus et al. (1992) zasugerował, że kwas alfa-liponowy prowadzi do zwiększonego wydalania rtęci nieorganicznej z żółcią w formie kompleksów DHLA-Hg2+. Jako, iż kompleksy te są podobne do organicznych rodzajów rtęci, warto rozważyć, że mogą zostać ponownie absorbowane przez jelita podobnie jak rtęć metylowana. Gdyby tak było, a błonnik byłby zdolny do związania tych kompleksów, zwiększona podaż błonnika mogłaby prowadzić do zmniejszonej reabsorpcji tych kompleksów, a co za tym idzie do zwiększonej skuteczności leczenia i zmniejszenia efektów ubocznych.

     

    8. Diagnostyka zatrucia rtęcią w kontekście roli tioli, ditioli i wchodzących w interakcje ligand.

    8.1. Poziomy w krwi i moczu

    Przy niedawnej ekspozycji na rtęć, zbadanie poziomów rtęci w krwi i moczu może być użyteczne diagnostycznie i w celu obliczenia właściwej dawki (Clarkson 2002; Risher i Dewoskin, 1999; Risher i Amler, 2005). Jednakże przy ekspozycji przeszłej, przewlekłej albo na niskie dawki rtęci (Rosher i Dewoskin, 1999), poziomy rtęci w krwi i moczu nie odzwierciedlają stopnia zatrucia. Dodatkowo czas odkładania się rtęci w niektórych organach, w szczególności w mózgu (Braunwald et al., 2001, Hargreaves et al., 1988, Opitz et al., 1996, Takeuchi et al. 1989, Vahter et al., 1994) jest o wiele dłuższy niż we krwi. Warto odnotować, że u robotników, narażonych na ekspozycję na duże ilości rtęci (Opitz et al., 1996) po przejściu leczenia, stwierdzono stałe poziomy rtęci w krwi i moczu przez kolejne 3 lata aż do całkowitego uwolnienia organizmu z rtęci. Jednakże po śmierci pacjenta, 17 lat później, stwierdzono w jego mózgu znaczne ilości rtęci . Najwidoczniej w tym przypadku, poziom rtęci w krwi i moczu nie był miarodajnym wskaźnikiem obciążenia organizmu rtęcią (Uwaga: przy pomiarach rtęci w moczu, należy jednocześnie zmierzyć poziom kreatyniny w celu skontrolowania poziomu nawodnienia).

    Po pierwsze, co zostało wcześniej omówione, jest możliwe, że poziom tioli, selenu i prawdopodobnie cynku mogą mieć efekt (bezpośredni albo pośredni) na dystrybucję rtęci. Niewiele wiadomo o interakcjach tych związków z chelatorami jak DMSA czy DMPS, chociaż wiadomo, że jednoczesne podanie selenu z DMSA lub DMPS prowadzi do zmniejszonej efektywności chelatorów (Juresa et al., 2005). Aktualne testy prowokacyjne nie uwzględniają w żaden sposób tych istotnych zmiennych.

    W swojej pracy o testach prowokacyjnych DMPS Aposhian et al. (1992a) stwierdził „…bardzo znaczącą pozytywną korelację pomiędzy rtęcią wydalaną w moczu dwie godziny po podaniu DMPS

     

    9. Testy prowokacyjne w chelatacji

    W testach prowokacyjnych, mierzy się podstawowy poziom metalu w moczu (zwykle jednego z metali, np. rtęci, ołowiu) przed podaniem związku chelatacyjnego, a po pewnym okresie czasu pobiera się drugą próbkę moczu i ponownie mierzy poziom metalu. Poziomy metalu przed i po obciążeniu są następnie porównywane ze sobą jak i istniejącymi normami.

    Do wykonywania tego typu testów wykorzystywano zarówno DMPS, jak i DMSA ze zróżnicowanymi rezultatami (Aposhian et al., 1992a; Frumkin et al., 2001; Roels et al. 1991). Podczas gdy niektórzy z autorów skupili się na klinicznym wykorzystaniu testów prowokacyjnych i interpretacji wyników, tłumacząc brak jednoznaczności tych wyników (Risher i Amler, 2005), oczywistym jest że są mechanizmy i założenia dotyczące metodologii samych testów, które należy rozważyć.

    Po pierwsze, jak już wcześniej wspomniano, jest wysoce prawdopodobnym, że poziom tioli, selenu i cynku mają wpływ (bezpośredni lub pośredni) na dystrybucję rtęci. Niewiele wiadomo o interakcjach tych związków z chelatorami takimi jak DMPS czy DMSA, chociaż zaobserwowano, że jednoczesne podawania selenu z DMPS lub DMSA prowadzi do zmniejszenia skuteczności chelatorów (Jursa et al., 2005). Aktualnie testy prowokacyjne nie uwzględniają tych współistniejących zmiennych.

    W swojej pracy o testach prowokacyjnych DMPS Aposhian et al. (1992a) odkrył „bardzo znaczącą pozytywną korelację pomiędzy rtęcią wydalaną w moczu dwie godziny po podaniu DMPS a ilością plomb amalgamatowych”. Warto zauważyć, że podczas przeprowadzania tego eksperymentu w ścisły sposób kontrolowano dietę uczestników, chociaż zostało to wyraźnie stwierdzone dopiero w późniejszej publikacji (Aposhian et al., 1995). Z klinicznego punktu widzenia testy prowokacyjne są często stosowane przez pacjentów bez wiedzy lekarza (Risher i Amler, 2005), co sugeruje, że wystandaryzowana kontrola dietetyczna nie jest stosowana. Wydaje się uzasadnionym, że ścisła kontrola dietetyczna zastosowana przez Aposhiana et al. (1992a, 1995) mogła w jakimś stopniu zminimalizować (albo wystandaryzować) poziomy kompetycyjnych ligand w osoczu uczestników eksperymentu, a w konsekwencji do bardziej przejrzystych jego wyników.

    Po drugie, duże dożylne dawki, zwykle stosowane w testach prowokacyjnych, niosą ze sobą ryzyko redystrybucji rtęci. Jak wcześniej zaobserwowano, chelatory konkurują z innymi ligandami, m.in. enogenicznymi wolnymi tiolami, tiolami łączącymi fragmenty białek oraz metaloproteinami takimi jak selenoproteina-P i metalotioneina. Zaobserwowano taką redystrybucję u szczurów, co wiązało się z kompetycją pomiędzy selenoproteiną-P po podaniu zarówno DMPS jak i DMSA (Juresa et al., 2005). Używając większej dożylnej dawki, większe ilości rtęci są mobilizowane i w ten sposób zwiększa się w przypadku redystrybucji ilość rtęci redystrybuowanej do innych organów. Najgorszym scenariuszem wydaje się redystrybucja rtęci do mózgu, z jednej strony z uwagi na fakt, iż tam ma ona najdłuższy okres półrozpadu (Braunwald et al., 2001, Hargreaves et al., 1988, Opitz et al., 1996, Takeuchi et al., 1989; Vahter et al., 1994), a z drugiej strony z uwagi na niemożność usunięcia jej z mózgu przez DMSA czy DMPS (Aposhian et al., 2003, Bucht i Lauwerys, 1989; George et al., 2004). Co więcej, należy rozważyć, że mogą mieć miejsce uboczne skutki podawania leków i przy tak dużych ich dawkach mogą wystąpić gorsze reakcje na leki.

    Po trzecie, testy prowokacyjne są zwykle przeprowadzane u pacjentów z plombami amalgamatowymi. Budzi to wątpliwość, czy związki chelatujące mogą chelatować rtęć z plomb amalgamatowych prowadząc do niedokładnych rezultatów i – co poważniejsze – do zwiększenia obciążenia rtęcią organizmu pacjenta. Autor niniejszej publikacji nie znalazł jakichkolwiek wyników badań dotyczących tej możliwości.

    Po czwarte, jako że DMPS i DMSA nie chelatują rtęci z mózgu (Aposhian et al., 2003; Bucht i Lauwrys, 1989; George et al., 2004) testy prowokacyjne oparte na tych związkach nie oddają w sposób dokładny poziomu rtęci w mózgu. Jako, iż mózg jest jednym z głównych organów, w których osadza się na wiele lat rtęć metaliczna i organiczna (Braunwald et al., 2001; Hargreaves et al., 1988; Opitz et al., 1996; Takeuchi et al., 1989; Vahter et al., 1994), jest to istotna wada testów prowokacyjnych.

    Po piąte, nie ma określonych norm maksymalnej i minimalnej ekspozycji na rtęć ani żadnego dozwolonego „bezpiecznego” poziomu ekspozycji na rtęć (Berlin, 2003; Risher i Amler, 2005). To oznacza, że wyniki testów prowokacyjnych nie mogą być porównane do żadnych norm i stało się to przyczyną krytyki testów prowokacyjnych (Risher i Amler, 2005). Jest w tym pewna przewrotna logika, gdyż aby ustalić normy dla populacji, należy najpierw opracować dokładny test. Co więcej, uwzględniając fakt, że rtęć jest bardzo toksyczny pierwiastkiem o nieustalonych funkcjach odżywczych, jest powszechna w środowisku (Clarkson et al., 2003), nie ma jasno określonej granicy bezpiecznej ekspozycji (Berlin 2003, Risher i Amler, 2005) i nie ma aktualnie powszechnie zaakceptowanej metody określania poziomu obciążenia organizmu rtęcią, poza autopsją, sam pomysł ustalenia ogólnych norm dotyczących ekspozycji na rtęć wydaje się, w chwili pisania tych słów, całkowicie niepoważnym postulatem.

     

    10. Wnioski

    Znaczenie rtęci w rozwoju wielu przewlekłych stanów chorobowych, takich jak stwardnienie zanikowe boczne (choroba Lou Gehringa), autyzm, choroba Alzheimera, stwardnienie rozsiane i choroba Parkinsona pozostaje kwestią kontrowersyjną. Jasnym jest, że wciąż istnieją znaczące luki w wiedzy na temat biologicznych mechanizmów działania różnych rodzajów rtęci na organizm. Wygląda jednak na to, iż osoby cierpiące na wyżej wymienione choroby same podejmują decyzje i poszukują dróg leczenia chelatacyjnego na własną rękę lub za radą swoich lekarzy (Berlin 2003; Risher i Amler, 2005). Jak widać, istnieje pilna potrzeba dalszych badań licznych kluczowych kwestii.

    DMPS i DMSA to leki wybierane przy zatruciu rtęcią. Są dowody na to, że nie są one maksymalnie efektywnymi chelatorami (George et al., 2004) i są nieskuteczne w chelatowaniu rtęci z mózgu (Aposhian et al., 2003; Bucht i Lauwerys, 1989; George et al., 2004). Pomimo, iż są mniej toksyczne niż związki chelatujące rajue haj British Anti-Lewisite (BAL) i D-Penicillamine, mają również pewne toksyczne efekty uboczne (w szczególności DMPS). Istnieje potrzeba opracowania bardziej skutecznych i bezpiecznych związków chelatacyjnych, które będą w stanie usunąć rtęć z mózgu.

    Aktualnie ALA jest jedynym chelatorem potencjalnie zdolnym do przeniknięcia do centralnego i obwodowego układu nerwowego. Chociaż przy zastosowaniu pewnego konkretnego harmonogramu dawkowania związek ten nie miał właściwości chelatacyjnych (Aposhian et al., 2003), poprzednie badania udowodniły, że działanie ALA zależne jest zarówno od wielkości jak i częstotliwości dawki (Donatelli 1955; Grunert 1960). Dalsze badanie tej kwestii jest niezbędne w celu ustalenia przydatności ALA jako chelatora klinicznego.

    Wydaje się oczywistym w wyniku badań Bridgesa i Zalupsa (2005), że tiole endogeniczne, takie jak cysteina, homocysteina, GSH i NAC odgrywają ważną rolę w dystrybucji rtęci w organizmie. Jest to prawdopodobnie bardzo istotne z klinicznego punktu widzenia i należy przeprowadzić dalsze badania w celu ustalenia potencjalnych efektów podaży tioli w diecie i suplementacji na dystrybucję i toksyczność rtęci. Wielu lekarzy doradza stosowanie GSH albo NAC w terapii zatrucia rtęcią – nie wydaje się to działaniem rozsądnym w świetle dostępnych dowodów.

    Cynk i selen również wydają się mieć wpływ na dystrybucję rtęci i ochronę przed jej toksycznością. Są to relacje bardzo dynamiczne i aktualnie słabo zrozumiane. Inne pierwiastki również mogą odgrywać ważną rolę, a interakcje cynku i seleny z chelatorami takimi jak DMPS/DMSA nie zostały wystarczająco dokładnie opisane.

    Efekt przyjmowania błonnika spożywczego na dystrybucję i eliminację rtęci jest kolejnym dużym nieodkrytym polem badawczym. Kilka istniejących publikacji wskazuje jednakże na rolę błonnika spożywczego jako substancji potencjalnie wzmacniającej eliminację rtęci metylowanej z organizmu. Efekt błonnika spożywczego na eliminację DHLA-Hg2+ nie został dokładnie oznaczony.

    Istnieje pilna potrzeba opracowania dokładnej metody diagnozowania zatrucia rtęcią w praktyce klinicznej w przypadku ekspozycji na rtęć - przeszłej, przewlekłej albo w niskich dawkach. Podczas gdy zaleca się w tym zakresie badanie poziomu rtęci w moczu i we krwi (Risher i Amler, 2005), są to testy użyteczne jedynie w przypadku niedawnej ekspozycji na rtęć i nie odzwierciedlają poziomu rtęci w mózgu. Aktualne testy prowokacyjne są niedokładne i z powodu stosowanych w nich dużych dawkach, niosą ze sobą ryzyko redystrybucji rtęci i efektów ubocznych na stosowane leki. Nie jest również zrozumiałe, jaki efekt będzie miało użycie związku chelatacyjnego u pacjenta z plombami amalgamatowymi.

    Nie zostały również określone normy dla obciążenia organizmu rtęcią i bezpieczny poziom ekspozycji na rtęć. Przy braku dokładnych testów klinicznych pomysł określenia takich norm ma i tak niewielkie znaczenie. Co więcej, podczas gdy cała debata skupia się na bezpieczeństwie plomb amalgamatowych, stosowania tiomersalu i spożycia ryb zawierających rtęć oraz możliwej roli rtęci w niektórych chorobach przewlekłych, wydawałoby się logicznym opracowanie w pierwszej kolejności dokładnej metody określania poziomu rtęci w organizmie u zatrutych osób, gdyż bez tego nie będzie możliwe rozwikłanie innych kwestii.

    Uwzględniając możliwość, że rtęć może mieć duże znaczenie w przebiegu licznych chorób, należy pilnie odpowiedzieć na wszystkie pytania dotyczące kwestii rtęci. Oczywistym jest, że tiole, ditiole, składniki odżywcze i interakcje z ligandami odgrywają ważną rolę w toksykologii rtęci. Lepsze zrozumienie roli tych cząsteczek może być kluczowe dla opracowania lepszych testów klinicznych zatrucia rtęcią i być może również dla opracowania bardziej skutecznych protokołów leczenia zatrucia rtęcią.

     

    Oświadczenie dotyczące konfliktu interesów

     

    Nie istnieje konflikt interesów.

     

    Podziękowania

    Dziękuję za wsparcie profesora Kevina Nolana z Royal College of Surgeons w Irlandii oraz całego Royal College of Surgeons w Irlandii

     

    POPRAWKA DO:

    Rola tioli, dwutioli, czynników odżywczych i interakcji ligand w toksykologii rtęci.

    [TOKSYKOLOGIA 234 (2007) 145-156)

     

    James P.K. Rooney ∗

    Centrum Biologii Syntetycznej i Chemicznej, Departament Chemii Farmaceutycznej i Medycznej,

    Chirurgiczny Uniwersytet Królewski w Irlandii, 123 St. Stephens Green, Dublin 2, Irlandia

     

    Autor z żalem informuje ze następujący błąd miał miejsce w powyższym piśmie.

     

    W artykule opublikowanym w Toksykologia 234 (2007) , 145-156, Sekcji 6.1 (strona 150, kolumna 2) artykułu napisano:

    „Chociaż nie recenzowaną naukowo publikacją, Cutler przekonująco uargumentował….” (bibliografia Cutler, 1999).

    Zdanie jest nieprawidłowe gdyż pozycja bibliograficzna jest recenzowana naukowo.

     

    Poniżej poprawiony text:

    „Cutler przekonująco uargumentował istotność częstotliwości podawania chelatora, co wzbudza zainteresowanie społeczności naukowej.”

     

    Bibliografia

    Aposhian, H.V., Bruce, D.C., Alter, W., Dart, R.C., Hurlbut, K.M., Aposhian, M.M., 1992a. Urinary mercury after administration of 2,3-dimercaptopropane-1-sulfonic acid: correlation with dental amalgam score. FASEB J. 6, 2472-2476.

     

    Aposhian, H.V., Maiorino, R.M., Gonzalez-Ramirez, D., Zuniga-Charles, M., Xu, Z., Hurlbut, K.M., Junco-Munoz, P., Dart, R.C., Aposhian, M.M., 1995. Mobilization of heavy metals by newer, therapeutically useful chelating agents. Toxicology 97, 23-38.

     

    Aposhian, H.V., Maiorino, R.M., Rivera, M., Bruce, D.C., Dart, R.C., Hurlbut, K.M., Levine, D.J., Zheng, W., Fernando, Q., Carter, D., et al., 1992b. Human studies with the chelating agents, DMPS and DMSA. J. Toxicol. Clin. Toxicol. 30, 505-528.

     

    Aposhian, H.V., Morgan, D.L., Queen, H.L., Maiorino, R.M., Aposhian, M.M., 2003. Vitamin C, glutathione, or lipoic acid did not decrease brain or kidney mercury in rats exposed to mercury vapor. J. Toxicol. Clin. Toxicol. 41, 339-347.

     

    Ballatori, N., Clarkson, T.W., 1985. Biliary secretion of glutathione and of glutathione-metal complexes. Fundam. Appl. Toxicol. 5, 816-831.

     

    Berlin, M., 2003. Mercury in dental-fillings materials - an updated risk analysis in environmental medical terms. The Dental Material Commision - Care and Consideration.

     

    Braunwald, E., Fauci, A.S., Kasper, D.L., Hauser, S.L., Longo, D.L., Jameson, J.L., 2001. Harrison's Principles of Internal Medicine.McGraw-Hill, pp. 467-469, 2592-2593, 2602.

     

    Bridges, C.C., Zalups, R.K., 2005. Molecular and ionic mimicry and the transport of toxic metals. Toxicol. Appl. Pharmacol. 204,274-308.

     

    Buchet, J.P., Lauwerys, R.R., 1989. Influence of 2,3-dimercaptopropane-1-sulfonate and dimercaptosuccinic acid on the mobilization of mercury from tissues of rats pretreated with mercuric chloride, phenylmercury acetate or mercury vapors. Toxicology 54, 323-333.

     

    Champe, P.C., Harvey, R.A., Ferrier, D.R., 2005. Lippincott's Illus-trated Reviews: Biochemistry, 146. Lippincott Williams & Wilkins, pp. 108-110, 146, 264.

     

    Charleston, J.S., Body, R.L., Bolender, R.P., Mottet, N.K., Vahter, M.E., Burbacher, T.M., 1996. Changes in the number of astrocytes and microglia in the thalamus of the monkey Macaca fascicularis following long-term subclinical methylmercury exposure. Neuro-toxicology 17, 127-138.

     

    Charleston, J.S., Body, R.L., Mottet, N.K., Vahter, M.E., Burbacher, T.M., 1995. Autometallographic determination of inorganic mer-cury distribution in the cortex of the calcarine sulcus of the monkey Macaca fascicularis following long-term subclinical exposure to methylmercury and mercuric chloride. Toxicol. Appl. Pharmacol. 132, 325-333.

     

    Chen, J., Berry, M.J., 2003. Selenium and selenoproteins in the brain and brain diseases. J. Neurochem. 86, 1-12.

     

    Clarkson, T.W., 1972. The pharmacology of mercury compounds. Annu. Rev. Pharmacol. 12, 375-406.

     

    Clarkson, T.W., 2002. The three modern faces of mercury. Environ. Health Perspect. 110 (Suppl. 1), 11-23

     

    Clarkson, T.W., Magos, L., Myers, G.J., 2003. The toxicology of mercury—current exposures and clinical manifestations. N. Engl. J. Med. 349, 1731-1737.

     

    Cutler, A., 1999. Amalgam Illness: Diagnosis and Treatment. Self-Published, pp. 195-196, 199-208.

     

    Davis, L.E., Kornfeld, M., Mooney, H.S., Fiedler, K.J., Haaland, K.Y.,Orrison, W.W., Cernichiari, E., Clarkson, T.W., 1994. Methylmercury poisoning: long-term clinical, radiological, toxicological, and pathological studies of an affected family. Ann. Neurol. 35,680-688.

     

    Donatelli, L., 1955. Internal Symposium on Thioctic Acid, Naples.

     

    Frumkin, H., Manning, C.C., Williams, P.L., Sanders, A., Taylor, B.B., Pierce, M., Elon, L., Hertzberg, V.S., 2001. Diagnostic chelation challenge with DMSA: a biomarker of long-term mercury expo-sure? Environ. Health Perspect. 109, 167-171.

     

    Gailer, J., George, G.N., Pickering, I.J., Madden, S., Prince, R.C., Yu,E.Y., Denton, M.B., Younis, H.S., Aposhian, H.V., 2000. Structural basis of the antagonism between inorganic mercury and selenium in mammals. Chem. Res. Toxicol. 13, 1135-1142.

     

    Geier, D.A., Geier, M.R., 2006. Early downward trends in neurode-velopmental disorders following removal ofthimerosal-containing vaccines. J. Am. Physicians Surgeons 11, 8-13.

     

    George, G.N., Prince, R.C., Gailer, J., Buttigieg, G.A., Denton, M.B.,Harris, H.H., Pickering, I.J., 2004. Mercury binding tothe chelation therapy agents DMSA and DMPS and the rational design ofcustom chelators for mercury. Chem. Res. Toxicol. 17, 999-1006.

     

    Goyer, R., Klaassen, C.D., Waalkes, M.P., 1995. Metal Toxicology. Academic Press, pp. 35-37.

     

    Gregus, Z., Stein, A.F., Varga, F., Klaassen, C.D., 1992. Effect of lipoic acid on biliary excretion of glutathione and metals. Toxicol. Appl.Pharmacol. 114, 88-96.

     

    Grunert, R.R., 1960. The effect of DL-alpha-lipoic acid on heavy-metal intoxication in mice and dogs. Arch. Biochem. Biophys. 86,190-194.

     

    Hargreaves, R.J., Evans, J.G., Janota, I., Magos, L., Cavanagh, J.B., 1988. Persistent mercury in nerve cells 16 years after metal-lic mercury poisoning. Neuropathol. Appl. Neurobiol. 14, 443­452.

     

    Hill, K.E., Burk, R.F., 1985. Effect of selenium deficiency on the disposition of plasma glutathione. Arch. Biochem. Biophys. 240,166-171.

     

    Hol, P.J., Vamnes, J.S., Gjerdet, N.R., Eide, R., Isrenn, R., 2001. Dental amalgam and selenium in blood. Environ. Res. 87, 141-146.

     

    Juresa, D., Blanusa, M., Kostial, K., 2005. Simultaneous administra-tion of sodium selenite and mercuric chloride decreases efficacy of DMSA and DMPS in mercury elimination in rats. Toxicol. Lett. 155, 97-102.

     

    Kerper, L.E., Ballatori, N., Clarkson, T.W., 1992. Methylmercury transport across the blood-brain barrier by an amino acid carrier. Am. J. Physiol. 262, R761-R765.

     

    Lorscheider, F.L., Vimy, M.J., Summers, A.O., 1995. Mercury expo-sure from "silver" tooth fillings: emerging evidence questions a traditional dental paradigm. FASEB J. 9, 504-508.

     

    Magos, L., Brown, A.W., Sparrow, S., Bailey, E., Snowden, R.T., Skipp, W.R., 1985. The comparative toxicology of ethyl- and methylmer-cury. Arch. Toxicol. 57, 260-267.

     

    Mutter, J., Naumann, J., Sadaghiani, C., Walach, H., Drasch, G., 2004.Amalgam studies: disregarding basic principles of mercury toxicity. Int. J. Hyg. Environ. Health 207, 391-397.

     

    Nierenberg, D.W., Nordgren, R.E., Chang, M.B., Siegler, R.W., Blayney, M.B., Hochberg, F., Toribara, T.Y., Cernichiari, E., Clark-son, T., 1998. Delayed cerebellar disease and death after accidental exposure to dimethylmercury. N. Engl. J. Med. 338, 1672-1676.

     

    Nylander, M., Friberg, L., Eggleston, D., Bjorkman, L., 1989. Mercury accumulation in tissues from dental staff and controls in relation to exposure. Swed. Dent. J. 13, 235-243.

     

    Opitz, H., Schweinsberg, F., Grossmann, T., Wendt-Gallitelli, M.F., Meyermann, R., 1996. Demonstration of mercury in the human brain and other organs 17 years after metallic mercury exposure. Clin. Neuropathol. 15, 139-144.

     

    Ou, S., Gao, K., Li, Y., 1999. An in vitro study of wheat bran binding capacity for Hg, Cd, and Pb. J. Agric. Food Chem. 47, 4714-4717.

     

    Ozuah, P.O., 2000. Mercury poisoning. Curr. Probl. Pediatr. 30,91-99.

     

    Parker, S.K., Schwartz, B., Todd, J., Pickering, L.K., 2004. Thimerosal-containing vaccines and autistic spectrum disorder: a critical review of published original data. Pediatrics 114, 793-804.

     

    Packer, L., Tritschler, H.J., Wessel, K., 1997. Neuroprotection by the metabolic antioxidant alpha-lipoic acid. Free Radic. Biol. Med. 22, 359-378.

     

    Packer, L., Witt, E.H., Tritschler, H.J., 1995. Alpha-lipoic acid as a biological antioxidant. Free Radic. Biol. Med. 19, 227-250.

     

    Richardson, R.J., Murphy, S.D., 1975. Effect of glutathione deple-tion on tissue deposition of methylmercury in rats. Toxicol. Appl. Pharmacol. 31, 505-519.

     

    Risher, J.F., Amler, S.N., 2005. Mercury exposure: evaluation and intervention the inappropriate use ofchelating agents in the diagno-sis and treatment of putative mercury poisoning. Neurotoxicology 26, 691-699.

     

    Risher, J., Dewoskin, R., 1999. Toxicological profile for Mercury. In: Services, U.D. O. H. A. H. (Ed.), Agency for Toxic Substances and Disease Registry.

     

    Roels, H.A., Boeckx, M., Ceulemans, E., Lauwerys, R.R., 1991. Urinary excretion of mercury after occupational exposure to mercury vapour and influence of the chelating agent meso-2,3-dimercaptosuccinic acid (DMSA). Br. J. Ind. Med. 48, 247-253.

     

    Rowland, I.R., Mallett, A.K., Flynn, J., Hargreaves, R.J., 1986. The effect of various dietary fibres on tissue concentration and chemi­cal form of mercury after methylmercury exposure in mice. Arch.Toxicol. 59, 94-98.

     

    Sasakura, C., Suzuki, K.T., 1998. Biological interaction between transition metals (Ag, Cd and Hg), selenide/sulfide and selenoprotein P. J. Inorg. Biochem. 71, 159-162.

     

    Sobolev, M.B., Khatskel, S.B., Muradov, A., 1999. Enterosorption by nonstarch polysaccharides as a method of treatment of children with mercury poisoning. Vopr. Pitan. 68, 28-30. Sweetman, S., 2002. Martindale: The Complete Drug Reference. Pharmaceutical Press, pp. 1024-1026.

     

    Takeuchi, T., Eto, K., Tokunaga, H., 1989. Mercury level and his-tochemical distribution in a human brain with Minamata disease following a long-term clinical course of twenty-six years. Neuro-toxicology 10, 651-657.

     

    Tepel, M., Van der giet, M., Schwarzfeld, C., Laufer, U., Liermann, D., Zidek, W., 2000. Prevention of radiographic-contrast-agent-induced reductions in renal function by acetylcysteine. N. Engl. J. Med. 343 (3), 180-184.

     

    Vahter, M., Mottet, N.K., Friberg, L., Lind, B., Shen, D.D., Burbacher, T., 1994. Speciation of mercury in the primate blood and brain following long-term exposure to methyl mercury. Toxicol. Appl. Pharmacol. 124, 221-229.

     

    Vahter, M.E., Mottet, N.K., Friberg, L.T., Lind, S.B., Charleston, J.S., Burbacher, T.M., 1995. Demethylation of methyl mercury in dif-ferent brain sites of Macaca fascicularis monkeys during long-term subclinical methyl mercury exposure. Toxicol. Appl. Pharmacol. 134, 273-284.

     

    Xia, Y., Hill, K.E., Byrne, D.W., Xu, J., Burk, R.F., 2005. Effectiveness of selenium supplements in a low-selenium area of China. Am. J. Clin. Nutr. 81, 829-834.

     

    Yamamoto, I., 1985. Effect of various amounts of selenium on the metabolism of mercuric chloride in mice. Biochem. Pharmacol. 34, 2713-2720.

     

    Yoshida, M., Watanabe, C., Horie, K., Satoh, M., Sawada, M., Shi-mada, A., 2005. Neurobehavioral changes in metallothionein-null mice prenatally exposed to mercury vapor. Toxicol. Lett. 155, 361-368.

     

    Zalups, R.K., 2000. Molecular interactions with mercury in the kidney. Pharmacol. Rev. 52 (1), 113-143.

     

    Zalups, R.K., Ahmad, S., 2005a. Handling of the homocysteine S-conjugate of methylmercury by renal epithelial cells: role of organic anion transporter 1 and amino acid transporters. J. Pharmacol. Exp. Ther. 315, 896-904.

     

    Zalups, R.K., Ahmad, S., 2005b. Transport of W-acetylcysteine S-conjugates of methylmercury in Madin-Darby canine kidney cells stably transfected with human isoform of organic anion transporter 1. J. Pharmacol. Exp. Ther. 314, 1158-1168.

     

    Zalups, R.K., Lash, L.H., 2006. Cystine alters the renal and hepatic disposition of inorganic mercury and plasma thiol status. Toxicol. Appl. Pharmacol. 214, 88-97.

     

    oryginalny artykuł